8.1 / OPERATING SYSTEM OVERVIEW 251

various portions of main memory in order to seize and relinquish control alter-
nately. Certain other hardware features are also desirable:

* Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the processor
hardware should detect an error and transfer control to the monitor. The mon-
itor would then abort the job, print out an error message, and load the next job.

* Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, an interrupt
occurs, and control returns to the monitor.

* Privileged instructions: Certain instructions are designated privileged and can
be executed only by the monitor. If the processor encounters such an instruc-
tion while executing a user program, an error interrupt occurs. Among the
privileged instructions are I/O instructions, so that the monitor retains control
of all I/O devices. This prevents, for example, a user program from accidental-
ly reading job control instructions from the next job. If a user program wishes
to perform I/O, it must request that the monitor perform the operation for it.
If a privileged instruction is encountered by the processor while it is executing
a user program, the processor hardware considers this an error and transfers
control to the monitor.

¢ Interrupts: Early computer models did not have this capability. This feature
gives the operating system more flexibility in relinquishing control to and
regaining control from user programs.

Processor time alternates between execution of user programs and execution
of the monitor. There have been two sacrifices: Some main memory is now given over
to the monitor and some processor time is consumed by the monitor. Both of these
are forms of overhead. Even with this overhead, the simple batch system improves
utilization of the computer.

Multiprogrammed Batch Systems Even with the automatic job sequenc-
ing provided by a simple batch operating system, the processor is often idle. The
problem is that 1/O devices are slow compared to the processor. Figure 8.4 details
a representative calculation. The calculation concerns a program that processes
a file of records and performs, on average, 100 processor instructions per record.
In this example the computer spends over 96% of its time waiting for I/O devices
to finish transferring data! Figure 8.5a illustrates this situation. The processor
spends a certain amount of time executing, until it reaches an I/O instruction. It
must then wait until that 1/O instruction concludes before proceeding.

Figure 8.4 System Utilization Example

252 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Run Wait Run Wait

Time >

(a) Uniprogramming

Program A Run Wait Run Wait

Program B Wait| Ran Wait Run Wait

Combined Rx“ R;" Wait R:“ R;“ Wait
Time >

(b) Multiprogramming with two programs

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
v/ /A v/
Program C wait [Rar] Wait Run] Wait
Y/ /A /]
. Run | Run [Run/] . |Run|Run}Rur .
Combined X B | Ejlj Wait :n B :,8,“2 Wait

Time >

(c) Multiprogramming with three programs

Figure 8.5 Multiprogramming Example

This inefficiency is not necessary. We know that there must be enough memory
to hold the operating system (resident monitor) and one user program. Suppose that
there is room for the operating system and two user programs. Now, when one job
needs to wait for I/O, the processor can switch to the other job, which likely is not
waiting for I/O (Figure 8.5b). Furthermore, we might expand memory to hold three,
four, or more programs and switch among all of them (Figure 8.5c). This technique is
known as multiprogramming, or multitasking.' It is the central theme of modern
operating systems.

The term multitasking is sometimes reserved to mean multiple tasks within the same program that may
be handled concurrently by the operating system, in contrast to multiprogramming, which would refer to
multiple processes from multiple programs. However, it is more common to equate the terms
multitasking and multiprogramming, as is dpne in most standards dictionaries (e.g.. [IEEE Std 100-1992,
The New IEEE Standard Dictionary of Electrical and Electronics Terms).

8.1/ OPERATING SYSTEM OVERVIEW 253

Example 8.1 This example illustrates the benefit of multiprogramming. Consider
a computer with 250 Mbytes of available memory (not used by the operating system), a
- disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JORB3,dfe submitted
for execution at the same time, with the attributes listed in Table 8.1. We assume
minimal processor requirements for JOB2 and JOB3 and continuous disk and printer
use by JOB3. For a simple batch environment, these jobs will be executed in sequence.
Thus, JOB1 completes in 5 minutes. JOB2 must wait until the 5 minutes is over, and
then completes 15 minutes after that. JOB3 begins after 20 minutes and completes at
30 minutes from the time it was initially submitted. The average resource utilization,
throughput, and response times are shown in the uniprogramming column of Table 8.2.
Device-by-device utilization is illustrated in Figure 8.6a. It ‘is evident that there is
gross underutilization for all resources when averaged over the required 30»m1nute
time period.

Now suppose that the jobs are run concurrently und.:r a multxprogrammmg
operating system. Because there is little resource contention between the jobs, ail
three can run in nearly minimum time while coexisting with the others in the comput-
er (assuming that JOB2 and JOBS3 are allotted enough processor time to keep their

Table 8.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/O
Duration 5 min 15 min 10 min
Memory required 50 M 100 M 80M
Need disk? No No Yes
Need terminal? No Yes ‘ No
Need printer? No No Yes

Table 8.2 Effects of Multiprogramming on Resource Ultilization

Uniprogramming Multiprogramming

Processor use 20% . 40%

Memory use 33% 6%

Disk use 33% 67%

Printer use 33%. 67%

Elapsed time 30 min 15 min
Throughput rate 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

254 CHAPTER 8 / OPERATING SYSTEM SUPPORT

CPU
Memory
Disk
Terminal Terminal
Printer
|« > > > :
Job history I JOB1 JOB2_ JOB3 I Job history | JOBI1
T T T T T - JOB2
5 10 15 20 25 30
Minutes JOIB 3 T
—_— 0 5 10 15
Time .
Minutes Time
(a) Uniprogramming (b) Multiprogramming

Figure 8.6 Utilization Histograms

mpm amd output operations active). JOBI will still require 5 mmutes to completc but
at the end of that ume JOB2 will be one-t!nrd finished, and JOB3 half finished. All
three jobs. will have finished within 15 minutes. The improvement is evident when
examining the multiprogramming column of Table 8.2, obtained from the histogram
shown in Figure 8.6b.

As with a simple batch system, a multiprogramming batch system must
rely on certain computer hardware features. The most notable additional feature
that is useful for multiprogramming is the hardware that supports I/O interrupts
and DMA. With interrupt-driven I/O or DMA, the processor can issue an I/O
command for one job and proceed with the execution of another job while the
/O is carried out by the device controller. When the /O operation is complete,
the processor is interrupted and control is passed to an interrupt-handling pro-
gram in the operating system. The operating system will then pass control to
another job.

8.2 / SCHEDULING 255

‘Table 8.3 Batch Multnprogrammmg versus Time Sharmg

Principal objecti ‘) p usc g !E L e time
Source of divectives to : Jobmdhw %mmwdatthe
operating system commandspmvndadmthmepb I terminal

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run,
the jobs must be kept in main memory, requiring some form of memory manage-
ment. In addition, if several jobs are ready to run, the processor must decide
which one to run, which requires some algorithm for scheduling. These concepts
are discussed later in this chapter.

Time-Sharing Systems With the use of multiprogramming, batch processing
can be quite efficient. However, for many jobs, it is desirable to provide a mode in
which the user interacts directly with the computer. Indeed, for some jobs, such as
transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated microcomputer. That option was not available
in the 1960s, when most computers were big and costly. Instead time sharing was
developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can be used to handle multiple interactive jobs. In this
latter case, the technique is referred to as time sharing, because the processor’s
time is shared among multiple users. In a time-sharing system, multiple users si-
multaneously access the system through terminals, with the operating system inter-
leaving the execution of each user program in a short burst or quantum of
computation. Thus, if there are n users actively requesting service at one time, each
user will only see on the average 1/n of the effective computer speed, not counting
operating system overhead. However, given the relatively slow human reaction
time, the response time on a properly designed system should be comparable to
that on a dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The
key differences are listed in Table 8.3.

8.2 SCHEDULING

The key to multiprogramming is scheduling. In fact, four types of scheduling are
typically involved (Table 8.4). We will explore these presently. But first, we intro-
duce the concept of process. This term was first used by the designers of the Multics

256 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Table 8.4 Types of Scheduling

‘ Long-term scheduling : The decision t6 add to the pool of processes to be executed
7 Medhn-tent scheduling The decision to add to the number of processes that are
R . partially or fully in main memory
- Short-term scheduling - The decision as to which available process will be executed by
; : o the processor
VO scheduling The decision as to which process’s pending I/O request shall
be handled by an available I/0O device

operating system in the 1960s. It is a somewhat more general term than job. Many
definitions have been given for the term process, including

¢ A program in execution
¢ The “animated spirit” of a program
¢ That entity to which a processor is assigned

This concept should become clearer as we proceed.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for
processing. Thus, it controls the degree of multiprogramming (number of processes in
memory). Once admitted, a job or user program becomes a process and is added to the
queue for the short-term scheduler. In some systems, a newly created process begins in
a swapped-out condition, in which case it is added to a queue for the medium-term
scheduler.

In a batch system, or for the batch portion of a general-purpose operating
system, newly submitted jobs are routed to disk and held in a batch queue. The
long-term scheduler creates processes from the queue when it can. There are two
decisions involved here. First, the scheduler must decide that the operating system
can take on one or more additional processes. Second, the scheduler must decide
which job or jobs to accept and turn into processes. The criteria used may include
priority, expected execution time, and 1/O requirements.

For interactive programs in a time-sharing system, a process request is generat-
ed when a user attempts to connect to the system. Time-sharing users are not simply
queued up and kept waiting until the system can accept them. Rather, the operating
system will accept all authorized comers until the system is saturated, using some
predefined measure of saturation. At that point, a connection request is met with a
message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function, described in Section 8.3.
Typically, the swapping-in decision is based on the need to manage the degree of
multiprogramming. On a system that does not use virtual memory, memory man-
agement is also an issue. Thus, the swapping-in decision will consider the memory
requirements of the swapped-out processes.

8.2 / SCHEDULING 257

Short-Term Scheduling

The long-term scheduler executes relatively infrequently and makes the coarse-
grained decision of whether or not to take on a new process, and which one to take.
The short-term scheduler, also known as the dispatcher, executes frequently and
makes the fine-grained decision of which job to execute next.

Process States To understand the operation of the short-term scheduler, we need to
consider the concept of a process state. During the lifetime of a process, its status will
change a number of times. Its status at any point in time is referred to as a state. The
term state is used because it connotes that certain information exists that defines the
status at that point. At minimum, there are five defined states for a process (Figure 8.7):

o New: A program is admitted by the high-level scheduler but is not yet ready
to execute. The operating system will initialize the process, moving it to the
ready state.

* Ready: The process is ready to execute and is awaiting access to the processor.
 Running: The process is being executed by the processor.

« Waiting: The process is suspended from execution waiting for some system
resource, such as I/O.

o Halted: The process has terminated and will be destroyed by the operating
system.

For each process in the system, the operating system must maintain informa-
tion indicating the state of the process and other information necessary for process
execution. For this purpose, each process is represented in the operating system by a
process control block (Figure 8.8), which typically contains the following:

o Identifier: Each current process has a unique identifier.
« State: The current state of the process (new, ready, and so on).
« Priority: Relative priority level.

* Program counter: The address of the next instruction in the program to be
executed.

, Dispatch

Timeout

Figure 8.7 Five-State Process Model

258 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Figure 8.8 Process Control Block

* Memory pointers: The starting and ending locations of the process in memory.

* Context data: These are data that are present in registers in the processor
while the process is executing, and they will be discussed in Part Three. For
now, it is enough to say that these data represent the “context” of the process.
The context data plus the program counter are saved when the process leaves
the ready state. They are retrieved by the processor when it resumes execution
of the process.

* VO status information: Includes outstanding I/O requests, I/O devices (e.g.,
tape drives) assigned to this process, a list of files assigned to the process, and
SO on.

* Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

When the scheduler accepts a new job or user request for execution, it creates
a blank process control block and places the associated process in the new state.
After the system has properly filled in the process control block, the process is
transferred to the ready state.

Scheduling Techniques To understand how the operating system manages the
scheduling of the various jobs in memory, let us begin by considering the simple
example in Figure 8.9. The figure shows how main memory is partitioned at a given
point in time. The kernel of the operating system is, of course, always resident. In
addition, there are a number of active processes, including A and B, each of which is
allocated a portion of memory.

8.2 / SCHEDULING 259

Service handler

Interrupt handler

A
"Waiting''

(a)
Figure 8.9 Scheduling Example

We begin at a point in time when process A is running. The processor is
executing instructions from the program contained in A’s memory partition. At
some later point in time, the processor ceases to execute instructions in A and
begins executing instructions in the operating system area. This will happen for
one of three reasons:

1. Process A issues a service call (e.g., an I/O request) to the operating system.
Execution of A is suspended until this call is satisfied by the operating
system.

2. Process A causes an interrupt. An interrupt is a hardware-generated signal to
the processor. When this signal is detected, the processor ceases to execute A
and transfers to the interrupt handler in the operating system. A variety of
events related to A will cause an interrupt. One example is an error, such as
attempting to execute a privileged instruction. Another example is a timeout;

260 CHAPTER 8 / OPERATING SYSTEM SUPPORT

to prevent any one process from monopolizing the processor, each process is
only granted the processor for a short period at a time.

3. Some event unrelated to process A that requires attention causes an interrupt.
An example is the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context
data and the program counter for A in A’s process control block and then begins
executing in the operating system. The operating system may perform some work,
such as initiating an I/O operation. Then the short-term-scheduler portion of the
operating system decides which process should be executed next. In this example,
B is chosen. The operating system instructs the processor to restore B’s context data
and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short-term
scheduler. Figure 8.10 shows the major elements of the operating system in-
volved in the multiprogramming and scheduling of processes. The operating
system receives control of the processor at the interrupt handler if an interrupt
occurs and at the service-call handler if a service call occurs. Once the interrupt
or service call is handled, the short-term scheduler is invoked to select a process
for execution.

To do its job, the operating system maintains a number of queues. Each queue
is simply a waiting list of processes waiting for some resource. The long-term queue
is a list of jobs waiting to use the system. As conditions permit, the high-level sched-
uler will allocate memory and create a process for one of the waiting items. The
short-term queue consists of all processes in the ready state. Any one of these

Service
call
handler (code)

Service call
from process

Interrupt
from process § Interrupt
Interrupt handler (code) ; 4
from /O Short-term

scheduler]
(code)

Pass control
to process

Figure 8.10 Key Elements of an Operating System for Multiprogramming

8.2 / SCHEDULING 261

Long-term Short-term
queue queue
Admit

T =TT T T T frfprocessr

End

ot T -
(T

oceurs L | | | |

1/O n Queue

A

Figure 8.11 Queuing Diagram Representation of Processor Scheduling

processes could use the processor next. It is up to the short-term scheduler to pick
one. Generally, this is done with a round-robin algorithm, giving each process some
time in turn. Priority levels may also be used. Finally, there is an /O queue for each
I/O device. More than one process may request the use of the same 1/O device. All
processes waiting to use each device are lined up in that device’s queue.

Figure 8.11 suggests how processes progress through the computer under the
control of the operating system. Each process request (batch job, user-defined inter-
active job) is placed in the long-term queue. As resources become available, a process
request becomes a process and is then placed in the ready state and put in the short-
term queue. The processor alternates between executing operating system instructions
and executing user processes. While the operating system is in control, it decides which
process in the short-term queue should be executed next. When the operating system
has finished its immediate tasks, it turns the processor over to the chosen process.

As was mentioned earlier, a process being executed may be suspended for a
variety of reasons. If it is suspended because the process requests I/O, then it is placed
in the appropriate I/0O queue. If it is suspended because of a timeout or because the
operating system must attend to pressing business, then it is placed in the ready state
and put into the short-term queue.

Finally, we mention that the operating system also manages the I/O queues.
When an I/O operation is completed, the operating system removes the satisfied
process from that I/O queue and places it in the short-term queue. It then selects an-
other waiting process (if any) and signals for the I/O device to satisfy that process’s
request.

262 CHAPTER 8 / OPERATING SYSTEM SUPPORT

8.3 MEMORY MANAGEMENT

In a uniprogramming system, main memory is divided into two parts: one part
for the operating system (resident monitor) and one part for the program cur-
rently being executed. In a multiprogramming system, the “user” part of memo-
ry is subdivided to accommodate multiple processes. The task of subdivision
is carried out dynamically by the operating system and is known as memory
management.

Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes will be
waiting for I/O and the processor will be idle. Thus, memory needs to be allocated
efficiently to pack as many processes into memory as possible.

Swapping

Referring back to Figure 8.11, we have discussed three types of queues: the long-term
queue of requests for new processes, the short-term queue of processes ready to use
the processor, and the various I/O queues of processes that are not ready to use the
processor. Recall that the reason for this elaborate machinery is that I/O activities
are much slower than computation and therefore the processor in a uniprogramming
system is idle most of the time.

But the arrangement in Figure 8.11 does not entirely solve the problem. It is
true that, in this case, memory holds multiple processes and that the processor can
move to another process when one process is waiting. But the processor is so
much faster than I/O that it will be common for all the processes in memory to be
waiting on I/0. Thus, even with multiprogramming, a processor could be idle most
of the time.

What to do? Main memory could be expanded, and so be able to accommo-
date more processes. But there are two flaws in this approach. First, main memory
is expensive, even today. Second, the appetite of programs for memory has grown
as fast as the cost of memory has dropped. So larger memory results in larger
processes, not more processes.

Another solution is swapping, depicted in Figure 8.12. We have a long-term
queue of process requests, typically stored on disk. These are brought in, one at a
time, as space becomes available. As processes are completed, they are moved out of
main memory. Now the situation will arise that none of the processes in memory are
in the ready state (e.g., all are waiting on an /O operation). Rather than remain idle,
the processor swaps one of these processes back out to disk into an infermediate
queue. This is a queue of existing processes that have been temporarily kicked out of
memory. The operating system then brings in another process from the intermediate
queue, or it honors a new process request from the long-term queue. Execution then
continues with the newly arrived process.

Swapping, however, is an 1/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk /O is generally the
fastest I/O on a system (e.g., compared with tape or printer I/0), swapping will usu-
ally enhance performance. A more sophisticated scheme, involving virtual memory,

8.3 / MEMORY MANAGEMENT 263

Main

Disk storage

Long-term

Completed jobs
and user sessions

(a) Simple job scheduling

Disk storage

- .

memory

Intermediate
queue

AN

Completed jobs

Long-term and user sessions

queue

i
~

(b) Swapping

Figure 8.12 The Use of Swapping

improves performance over simple swapping. This will be discussed shortly. But
first, we must prepare the ground by explaining partitioning and paging.

Partitioning

The simplest scheme for partitioning available memory is to use fixed-size partitions,
as shown in Figure 8.13. Note that, although the partitions are of fixed size, they
need not be of equal size. When a process is brought into memory, it is placed in the
smallest available partition that will hold it.

Even with the use of unequal fixed-size partitions, there will be wasted mem-
ory. In most cases, a process will not require exactly as much memory as provided
by the partition. For example, a process that requires 3M bytes of memory would
be placed in the 4M partition of Figure 8.13b, wasting 1M that could be used by
another process.

A more efficient approach is to use variable-size partitions. When a process
is brought into memory, it is allocated exactly as much memory as it requires and
no more.

264 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Operating system Operating system
8M 8§M
2M
4M
6M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 8.13 Example of Fixed Partitioning of a 64-Mbyte Memory

mple 8.3 A exumple, uising 64'Mibytes of nirain memory, is sown‘in Figure 8.1,
Initi m Mﬁm:empmf the ‘opernting system (d): Thé first three
procm are loaded in, starting where the operating system-ends and' ‘ occupying just .

ngh PROCess &&&L'XM&M! “*hale” at the-end of niemory that is
Al some point, none of the processes in memory; is ready.
oul momsa 2. (e;), which leaves sufficient room fo load a
4 is smaller than process 2, another small

8.3 / MEMORY MANAGEMENT 265

Operating || ., Operating: [Operating | [[Operating |
system system system . Systems
Process1 |5 20M Process1 |\ 20M ‘Process1 | > 20M
> 56M Process 2 14M Process 2 | - 14M
36M
22M Process 3 18M
M
(a) (b) (c) d)
[Operating | Operating Operating ting
system system system system
: Process 2 14M
Process 1 20M Process 1 20M 20M
6M
1aM Process 4 8M Process 4 8M Process 4 8M
6M 6M 6M
Process 3 18M Process 3 18M Process 3 18M l?méessi! 18M
4M 4M 4M 4M
(e) 0 ® (h)

Figure 8.14 The Effect of Dynamic Partitioning

As this example shows, this method starts out well, but eventually it leads
to a situation in which there are a lot of small holes in memory. As time goes
on, memory becomes more and more fragmented, and memory utilization de-
clines. One technique for overcoming this problem is compaction: From time to
time, the operating system shifts the processes in memory to place all the free
memory together in one block. This is a time-consuming procedure, wasteful of
processor time.

Before we consider ways of dealing with the shortcomings of partitioning, we
must clear up one loose end. If the reader considers Figure 8.14 for a moment, it
should become obvious that a process is not likely to be loaded into the same place
in main memory each time it is swapped in. Furthermore, if compaction is used,
a process may be shifted while in main memory. A process in memory consists of

266 CHAPTER 8 / OPERATING SYSTEM SUPPORT

instructions plus data. The instructions will contain addresses for memory locations
of two types:

¢ Addresses of data items
* Addresses of instructions, used for branching instructions

But these addresses are not fixed. They will change each time a process is
swapped in. To solve this problem, a distinction is made between logical addresses and
physical addresses. A logical address is expressed as a location relative to the beginning
of the program. Instructions in the program contain only logical addresses. A physical
address is an actual location in main memory. When the Processor executes a process, it
automatically converts from logical to physical address by adding the current starting
location of the process, called its base address, to each logical address. This is another
example of a processor hardware feature designed to meet an operating system
requirement. The exact nature of this hardware feature depends on the memory man-
agement strategy in use. We will see several examples later in this chapter.

Paging

Both unequal fixed-size and variable-size partitions are inefficient in the use of mem-
ory. Suppose, however, that memory is partitioned into equal fixed-size chunks that
are relatively small, and that each process is also divided into small fixed-size chunks
of some size. Then the chunks of a program, known as pages, could be assigned to
available chunks of memory, known as frames, or page frames. At most, then, the
wasted space in memory for that process is a fraction of the last page.

Figure 8.15 shows an example of the use of pages and frames. At a given point
in time, some of the frames in memory are in use and some are free. The list of free
frames is maintained by the operating system. Process A, stored on disk, consists of
four pages. When it comes time to load this process, the operating system finds four
free frames and loads the four pages of the process A into the four frames.

Now suppose, as in this example, that there are not sufficient unused contigu-
ous frames to hold the process. Does this prevent the operating system from loading
A? The answer is no, because we can once again use the concept of logical address.
A simple base address will no longer suffice. Rather, the operating system maintains
a page table for each process. The page table shows the frame location for each page
of the process. Within the program, each logical address consists of a page number
and a relative address within the page. Recall that in the case of simple partitioning,
a logical address is the location of a word relative to the beginning of the program;
the processor translates that into a physical address. With paging, the logical-to-
physical address translation is still done by processor hardware. The processor must
know how to access the page table of the current process. Presented with a logical
address (page number, relative address), the processor uses the page table to pro-
duce a physical address (frame number, relative address). An example is shown in
Figure 8.16.

This approach solves the problems raised earlier. Main memory is divided into
many small equal-size frames. Each process is divided into frame-size pages: Smaller
processes require fewer pages, larger processes require more. When a process is
brought in, its pages are loaded into available frames, and a page table is set up.

8.3 / MEMORY MANAGEMENT 267

Main Main
memory memory
Process A Process A 3] ofA
Page 2
14 of A
Page 3
15 of A
In
16 use
Free frame list Free frame list »
13 In 20 n
14 'y use 17 use
15 Process A Page 0
18 tabl
% pag e 18] Fa
In
% 9| e
15 2
(a) Before (b) After

Figure 8.15 Allocation of Free Frames

Virtual Memory

Demand Paging With the use of paging, truly effective multiprogramming sys-
tems came into being. Furthermore, the simple tactic of breaking a process up into
pages led to the development of another important concept: virtual memory.

To understand virtual memory, we must add a refinement to the paging
scheme just discussed. That refinement is demand paging, which simply means that
each page of a process is brought in only when it is needed, that is, on demand.

Consider a large process, consisting of a long program plus a number of arrays
of data. Over any short period of time, execution may be confined to a small section of
the program (e.g., a subroutine), and perhaps only one or two arrays of data are being
used. This is the principle of locality, which we introduced in Appendix 4A. It would
clearly be wasteful to load in dozens of pages for that process when only a few pages
will be used before the program is suspended. We can make better use of memory by
loading in just a few pages. Then, if the program branches to an instruction on a page
not in main memory, or if the program references data on a page not in memory, a
page fault is triggered. This tells the operating system to bring in the desired page.

Thus, at any one time, only a few pages of any given process are in memory, and
therefore more processes can be maintained in memory. Furthermore, time is saved be-
cause unused pages are not swapped in and out of memory. However, the operating
system must be clever about how it manages this scheme. When it brings one page in, it

268 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Main
memory
_| Pagel
> oA | B
Page Relative address Frame Relative address Page 2 14
number within page number within frame of A
Logical \ / Physical \ / Page 3
address . address | 13| 30 of A 15
)\
16

17
> 13

Page 0

Process A
page table

Figure 8.16 Logical and Physical Addresses

must throw another page out; this is known as page replacement. If it throws out a page
just before it is about to be used, then it will just have to go get that page again almost
immediately. Too much of this leads to a condition known as thrashing: The processor
spends most of its time swapping pages rather than executing instructions. The avoid-
ance of thrashing was a major research area in the 1970s and led to a variety of complex
but effective algorithms. In essence, the operating system tries to guess, based on recent
history, which pages are least likely to be used in the near future.

With demand paging, it is not necessary to load an entire process into main
memory. This fact has a remarkable consequence: It is possible for a process to be
larger than all of main memory. One of the most fundamental restrictions in pro-
gramming has been lifted. Without demand paging, a programmer must be acutely
aware of how much memory is available. If the program being written is too large,
the programmer must devise ways to structure the program into pieces that can be
loaded one at a time. With demand paging, that job is left to the operating system
and the hardware. As far as the programmer is concerned, he or she is dealing with
a huge memory, the size associated with disk storage.

Because a process executes only in main memory, that memory is referred to
as real memory. But a programmer or user perceives a much larger memory—that
which is allocated on the disk. This latter is therefore referred to as virtual memory.
Virtual memory allows for very effective multiprogramming and relieves the user of
the unnecessarily tight constraints of main memory.

8.3 / MEMORY MANAGEMENT 269

Page Table Structure The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.16 suggests a hardware implementation of this scheme.
When a particular process is running, a register holds the starting address of the
page table for that process. The page number of a virtual address is used to index
that table and look up the corresponding frame number. This is combined with the
offset portion of the virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can occu-
py huge amounts of virtual memory. For example, in the VAX architecture, each
process can have up to 2% = 2 GBytes of virtual memory. Using 2° = 512-byte
pages, that means that as many as 2?2 page table entries are required per process.
Clearly, the amount of memory devoted to page tables alone could be unacceptably
high. To overcome this problem, most virtual memory schemes store page tables in
virtual memory rather than real memory. This means that page tables are subject to
paging just as other pages are. When a process is running, at least a part of its page
table must be in main memory, including the page table entry of the currently execut-
ing page. Some processors make use of a two-level scheme to organize large page
tables. In this scheme, there is a page directory, in which each entry points to a page
table. Thus, if the length of the page directory is X, and if the maximum length of a
page table is Y, then a process can consist of up to X X Y pages. Typically, the maxi-
mum length of a page table is restricted to be equal to one page. We will see an exam-
ple of this two-level approach when we consider the Pentium II later in this chapter.

An alternative approach to the use of one- or two-level page tables is the use
of an inverted page table structure (Figure 8.17). Variations on this approach are
used on the PowerPC, UltraSPARC, and the 1A-64 architecture. An implementation
of the Mach operating system on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped
into a hash value using a simple hashing function.? The hash value is a pointer
to the inverted page table, which contains the page table entries. There is one
entry in the inverted page table for each real memory page frame rather than one
per virtual page. Thus a fixed proportion of real memory is required for the tables
regardless of the number of processes or virtual pages supported. Because more
than one virtual address may map into the same hash table entry, a chaining tech-
nique is used for managing the overflow. The hashing technique results in chains
that are typically short—between one and two entries. The page table’s structure
is called inverted because it indexes page table entries by frame number rather
than by virtual page number.

2A hash function maps numbers in the range 0 through M into numbers in the range 0 through N, where
M > N.The output of the hash function is used as an index into the hash table. Since more than one input
maps into the same output, it is possible for an input item to map to a hash table entry that is already occu-
pied. In that case, the new item must overflow into another hash table location. Typically, the new item is
placed in the first succeeding empty space, and a pointer from the original location is provided to chain the
entries together. A document at this book’s Web site provides more information on hash functions.

270 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Virtual address
n bits
Control
n bits bits
Process
. Hash m bits Page # ID Chain
'function 0

m bits

Inverted page table Real address

(one entry for each
physical memory frame)

Figure 8.17 Inverted Page Table Structure

Translation Lookaside Buffer

In principle, then, every virtual memory reference can cause two physical memo-
ry accesses: one to fetch the appropriate page table entry, and one to fetch the
desired data. Thus, a straightforward virtual memory scheme would have the
effect of doubling the memory access time. To overcome this problem, most vir-
tual memory schemes make use of a special cache for page table entries, usually
called a translation lookaside buffer (TLB). This cache functions in the same way
as a memory cache and contains those page table entries that have been most
recently used. Figure 8.18 is a flowchart that shows the use of the TLB. By the
principle of locality, most virtual memory references will be to locations in
recently used pages. Therefore, most references will involve page table entries in
the cache. Studies of the VAX TLB have shown that this scheme can significantly
improve performance [CLARSS, SATYS81].

Note that the virtual memory mechanism must interact with the cache system
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.19. A
virtual address will generally be in the form of a page number, offset. First, the mem-
ory system consults the TLB to see if the matching page table entry is present. If it
is, the real (physical) address is generated by combining the frame number with the
offset. If not, the entry is accessed from a page table. Once the real address is gener-
ated, which is in the form of a tag and a remainder, the cache is consulted to see if
the block containing that word is present (see Figure 4.5). If so, it is returned to the
processor. If not, the word is retrieved from main memory.

8.3 / MEMORY MANAGEMENT 271

Return to
faulted instruction

Page fault
handling routine

OS instructs CPU
to read the page
from disk

Figure 8.18 Operation of Paging and Translation Lookaside Buffer (TLB)
[FURHS7]

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into a
real address. This involves reference to a page table, which may be in the TLB, in
main memory, or on disk. The referenced word may be in cache, in main memory, or
on disk. In the latter case, the page containing the word must be loaded into main
memory and its block loaded into the cache. In addition, the page table entry for
that page must be updated.

Segmentation

There is another way in which addressable memory can be subdivided, known as
segmentation. Whereas paging is invisible to the programmer and serves the purpose

272 CHAPTER 8 / OPERATING SYSTEM SUPPORT

TLB operation
B
| Y
Page # | Offset)
; TLB
' TLB miss]
TLB
1 hit Cache operation
Real address
, Y [i ¥ .
Y @ 1»|Tag|Remainder Cach Hit | Value
w\/ <A1
Miss T
\/\ Main
memory
Page table
Value

Figure 8.19 Translation Lookaside Buffer and Cache Operation

of providing the programmer with a larger address space, segmentation is usually
visible to the programmer and is provided as a convenience for organizing programs
and data and as a means for associating privilege and protection attributes with
instructions and data.

Segmentation allows the programmer to view memory as consisting of multi-
ple address spaces or segments. Segments are of variable, indeed dynamic, size. Typ-
ically, the programmer or the operating system will assign programs and data to
different segments. There may be a number of program segments for various types
of programs as well as a number of data segments. Each segment may be assigned
access and usage rights. Memory references consist of a (segment number, offset)
form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:

1. It simplifies the handling of growing data structures. If the programmer does
not know ahead of time how large a particular data structure will become,
it is not necessary to guess. The data structure can be assigned its own
segment, and the operating system will expand or shrink the segment as
needed.

8.4 / PENTIUM II AND POWERPC MEMORY MANAGEMENT 273

[

. It allows programs to be altered and recompiled independently without requiring
that an entire set of programs be relinked and reloaded. Again, this is accom-
plished using multiple segments.

3. It lends itself to sharing among processes. A programmer can place a utility pro-
gram or a useful table of data in a segment that can be addressed by other
processes.

4. It lends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or a system administra-
tor can assign access privileges in a convenient fashion.

These advantages are not available with paging, which is invisible to the
programmer. On the other hand, we have seen that paging provides for an effi-
cient form of memory management. To combine the advantages of both, some
systems are equipped with the hardware and operating system software to pro-
vide both.

8.4 PENTIUM Il AND POWERPC MEMORY MANAGEMENT

)
Pentium II Memory-Management Hardware

Since the introduction of the 32-bit architecture, microprocessors have evolved
sophisticated memory management schemes that build on the lessons learned with
medium- and large-scale systems. In many cases, the microprocessor versions are
superior to their larger-system antecedents. Because the schemes were developed by
the microprocessor hardware vendor and may be employed with a variety of operat-
ing systems, they tend to be quite general purpose. A representative example is the
scheme used on the Pentium II. The Pentium II memory management hardware is
essentially the same as that used in the Intel 80386 and 80486 processors, with some
refinements.

Address Spaces The Pentium II includes hardware for both segmentation and
paging. Both mechanisms can be disabled, allowing the user to choose from four dis-
tinct views of memory:

* Unsegmented unpaged memory: In this case, the virtual address is the same
as the physical address. This is useful, for example, in low-complexity, high-
performance controller applications.

¢ Unsegmented paged memory: Here memory is viewed as a paged linear address
space. Protection and management of memory is done via paging. This is favored
by some operating systems (e.g., Berkeley UNIX).

* Segmented unpaged memory: Here memory is viewed as a collection of logi-
cal address spaces. The advantage of this view over a paged approach is that it
affords protection down to the level of a single byte, if necessary. Furthermore,
unlike paging, it guarantees that the translation table needed (the segment
table) is on-chip when the segment is in memory. Hence, segmented unpaged
memory results in predictable access times.

274 CHAPTER 8 / OPERATING SYSTEM SUPPORT

* Segmented paged memory: Segmentation is used to define logical memory
partitions subject to access control, and paging is used to manage the alloca-
tion of memory within the partitions. Operating systems such as UNIX System
V favor this view.

Segmentation When segmentation is used, each virtual address (called a logical
address in the Pentium IT documentation) consists of a 16-bit segment reference and
a 32-bit offset. Two bits of the segment reference deal with the protection mecha-
nism, leaving 14 bits for specifying a particular segment. Thus, with unsegmented
memory, the user’s virtual memory is 2°2 = 4 GBytes. With segmented memory, the
total virtual memory space as seen by a user is 2% = 64 terabytes (TBytes). The
physical address space employs a 32-bit address for a maximum of 4 GBytes.

The amount of virtual memory can actually be larger than the 64 TBytes. This
is because the processor’s interpretation of a virtual address depends on which
process is currently active. Virtual address space is divided into two parts. One-half
of the virtual address space (8K segments X 4 GBytes) is global, shared by all
processes; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and
access attribute. There are four privilege levels from most protected (level 0) to least
protected (level 3). The privilege level associated with a data segment is its “classifica-
tion”; the privilege level associated with a program segment is its “clearance.” An exe-
cuting program may only access data segments for which its clearance level is lower than
(more privileged) or equal to (same privilege) the privilege level of the data segment.

The hardware does not dictate how these privilege levels are to be used; this
depends on the operating system design and implementation. It was intended that
privilege level 1 would be used for most of the operating system, and level 0 would be
used for that small portion of the operating system devoted to memory management,
protection, and access control. This leaves two levels for applications. In many sys-
tems, applications will reside at level 3, with level 2 being unused. Specialized appli-
cation subsystems that must be protected because they implement their own security
mechanisms are good candidates for level 2. Some examples are database manage-
ment systems, office automation systems, and software engineering environments.

In addition to regulating access to data segments, the privilege mechanism lim-
its the use of certain instructions. Some instructions, such as those dealing with
memory-management registers, can only be executed in level 0. I/O instructions can
only be executed up to a certain level that is designated by the operating system;
typically, this will be level 1.

The access attribute of a data segment specifies whether read/write or read-
only accesses are permitted. For program segments, the access attribute specifies
read/execute or read-only access.

The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual
address consists of the 32-bit offset and a 16-bit segment selector (Figure 8.20a). The
segment selector consists of the following fields:

* Table Indicator (TI): Indicates whether the global segment table or a local
segment table should be used for translation.

8.4 / PENTIUM Il AND POWERPC MEMORY MANAGEMENT 275

15 3/2/1 0
Index 'f RPL
TI = Table indicator
RPL = Requestor privilege level
(a) Segment selector
31 22 /21 12/11 0
Directory Table Offset
(b) Linear address
31 24 /23/22/ /20/19 16/15/14 13/12/11 8/7 0
D Al Segment
Base 31...24 G|/ v limit P(DPL|S Type Base 23...16
B L| 19..16
Base 15..0 Segment limit 15...0
AVL = Auvailable for use by system software G += Granularity D = Reserved
Base = Segment base address Limit = Segment limit
D/B = Default operation size P = Segment present
DPL = Descriptor privilege size Type = Segment type

S = Descriptor type

(c) Segment descriptor (segment table entry)

31 12/11 9 7/6/5/4/3/2/1/0
P|P
P U[R
Page frame address 31...12 AVL 0JA|C|W P
S S|W
DIT
AVL = Available for systems programmer use PWT = Write through
PS = Pagesize us = User/supervisor
A = Accessed RW = Read-write
PCD = Cache disable P = Present
(d) Page directory entry
31 12/11 9/ 1/6/5/4/3/2/1/0
P[P ulr
Page frame address 31...12 AVL DIA|C|W P
S|W
DIT
D = Dirty

(e) Page table entry
Figure 8.20 Pentium Memory-Management Formats

276 CHAPTER 8 / OPERATING SYSTEM SUPPORT

* Segment Number: The number of the segment. This serves as an index into the
segment table.

* Requested Privilege level (RPL): The privilege level requested for this
access.

Each entry in a segment table consists of 64 bits, as shown in Figure 8.20c. The
fields are defined in Table 8.5.

Paging Segmentation is an optional feature and may be disabled. When segmen-
tation is in use, addresses used in programs are virtual addresses and are converted
into linear addresses, as just described. When segmentation is not in use, linear
addresses are used in programs. In either case, the following step is to convert that
linear address into a real 32-bit address.

To understand the structure of the linear address, you need to know that the
Pentium II paging mechanism is actually a two-level table lookup operation. The first
level is a page directory, which contains up to 1024 entries. This splits the 4-GByte lin-
ear memory space into 1024 page groups, each with its own page table, and each
4 MBytes in length. Each page table contains up to 1024 entries; each entry corre-
sponds to a single 4-KByte page. Memory management has the option of using one
page directory for all processes, one page directory for each process, or some combina-
tion of the two. The page directory for the current task is always in main memory. Page
tables may be in virtual memory.

Figure 8.20 shows the formats of entries in page directories and page tables,
and the fields are defined in Table 8.5. Note that access control mechanisms can be
provided on a page or page group basis.

The Pentium II also makes use of a translation lookaside buffer. The buffer
can hold 32 page table entries. Each time that the page directory is changed, the
buffer is cleared.

Figure 8.21 illustrates the combination of segmentation and paging mecha-
nisms. For clarity, the translation lookaside buffer and memory cache mechanisms
are not shown.

Finally, the Pentium II includes a new extension not found on the 80386 or
80486, the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set to 1, then the paging unit permits the operating system program-
mer to define a page as either 4 KByte or 4 MByte in size.

When 4-MByte pages are used, there is only one level of table lookup for
pages. When the hardware accesses the page directory, the page directory entry
(Figure 8.20d) has the PS bit set to 1. In this case, bits 9 through 21 are ignored and
bits 22 through 31 define the base address for a 4-MByte page in memory. Thus, there
is a single page table.

The use of 4-MByte pages reduces the memory-management storage
require-ments for large main memories. With 4-K Byte pages, a full 4-GByte
main memory requires about 4 MBytes of mumory just for the page tables. With
4-MByte pages, a single table, 4 KBytes in length, is sufficient for page memory
management.

